Seminar 1- Introduction to the course and review of main mathematical terms

Program of the Seminar:

1. Rules and Demands for the Course (attached files)
2. Introduction to the Econometrics discipline
3. Review of terms
a. Matrix algebra
b. Differentiations

Practical tasks:

1. Write down an arbitrary column vector and create its transposition.
2. Carry out a scalar product of the vector. What is the result of the operation?
3. Carry out following operations and decide if the product will be a vector or a scalar.

$$
37
$$

$2-5+31=$
42
4. Write down an arbitrary matrix of $2 * 3$ and another matrix of the same size. Carry out their addition.
5. If possible, carry out an addition of the following matrices:
$\begin{array}{lllll}1 & 4 \\ 5 & 7\end{array}+2 \begin{array}{lll}3 & 5 & 7 \\ 2 & 1 & 3\end{array}=$
6. Determine the matrix size of the following operations:
3×5 x $5 \times 2=$
2×3 x $2 \times 3=$
$2 \times 1 \times 1 \times 5=$
7. Determine the resulting matrix size and if possible, carry out the product of the matrices:
a) $A=\begin{array}{ccc}3 & -1 & 0 \\ 2 & 3 & 1\end{array}$ 5
x $\quad B=1$
b) $A=\begin{array}{ll}4 & 3 \\ 2 & 6\end{array}$
x $\quad B=\begin{array}{ll}2 & 4 \\ 4 & 2\end{array}$
c) $A=\begin{array}{ccc}3 & 1 & 2 \\ -1 & 2 & 4\end{array}$
x $\quad B=\begin{array}{lll}1 & 4 & -1 \\ 0 & 3 & 1\end{array}$
8. Verify, if the commutative rule of multiplication $(A x B=B x A)$ applies also for matrices (on the example of 7b).
9. Carry out multiplication of $A x B$ and $B x A$ and derive the rule for multiplication of square matrices.

$$
A=\begin{array}{rrr}
3 & 0 & 1 \\
2 & 1 & 0 \\
2 & 0 & 1
\end{array} \quad \begin{array}{ll}
\\
& \mathrm{x}
\end{array} \quad \begin{array}{rlr}
3 & 2 & 1 \\
1 & 0 & 2 \\
3 & 1 & 0
\end{array}
$$

10. Carry out the inversion of the matrices and make a proof that your result is correct.
a) $A=\begin{array}{ll}3 & 2 \\ 1 & 3\end{array}$

$$
A^{-1}=
$$

$$
145
$$

b) $B=3 \quad 2 \quad 5$

$$
B^{-1}=
$$

435
c) $C=\begin{array}{cc}-1 & 3 \\ 4 & -2\end{array}$
$C^{-1}=$
11. Calculate the rank of the following matrices:
a) $A=\begin{array}{cccc}0 & -3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 2 & 3 & -1 & 0 \\ 3 & 2 & 1 & -4\end{array}$

$$
B=\begin{array}{cccc}
1 & 0 & 2 & 3 \\
-1 & 2 & 6 & 7 \\
-1 & 1 & 2 & 2 \\
-2 & 1 & 0 & -1
\end{array}
$$

12. Carry out the derivatives of the following functions:
a) $y=2 x^{3}+3 x+6$
b) $y=\sqrt{x}+2 \sqrt[2]{x^{3}}$
c) $y=4 x\left(2+5 x^{2}\right)$
d) $y=\left(x^{5}+3 x^{2}-2\right)^{4}$
e) $y=\frac{2 x^{3}+3}{3 x^{2}}$
f) $y=\frac{x^{2}-1}{x^{2}+1}$
g) $y=e^{5 x}$
h) $y=x e^{4-x}$
i) $y=\ln x^{2}$
j) $y=(\ln x)^{2}$
k) $y=\ln \left(x^{2}+3 x+4\right)$
